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1 Introduction

In a tough challenge to conventional wisdom, Lucas (1987) asked how much Americans

would be willing to pay, in terms of consumption, to live in an economy that is not sub-

ject to the macroeconomic volatility that the US witnessed during the post-war period.

Finding that a representative consumer would sacrifice at most one-tenth of a percent of

lifetime consumption, Lucas concluded that there would be little benefit in further at-

tempting to stabilize the residual risk of business cycles.

Not surprisingly, Lucas’s seminal result attracted a great deal of controversy and gen-

erated a wealth of literature that revisits his estimates. In this paper, we explore a critical

point, which is subtly present in Lucas (1987), that calls for a new measurement effort

when estimating the costs of business cycles: all observed consumption is already par-

tially smoothed. That is, the data that we gather for consumption stem from a realized

allocation that is subject to the status quo of economic stabilization policies.

In order to measure the contribution of ongoing policies as well as the relevance of

the residual to be smoothed, we then need to disentangle which part of the observed con-

sumption pertains to each category. To accomplish such a task, we propose a tractable

decomposition, inspired by the approach in Alvarez and Jermann (2004), in which ob-

served consumption is a weighted geometric mean of laissez-faire consumption, i.e., the

counterfactual consumption series in the case of incipient macroeconomic stabilization

policies and minimal intervention, and a riskless consumption sequence in the tradition

defined in Lucas (1987).

Our decomposition allows us to map the policies to a single parameter θ, which we

define as the span of stabilization power. Within this structure, we are able to prove that

the welfare cost of total economic fluctuations can be disentangled into the benefit of on-

going policies and the cost of residual fluctuations. We dialogue directly with the classic

literature and use the flexibility of this approach to apply our formulation to three types

of shock structures for the consumption process: the one of Lucas (1987) with transitory

shocks, the one of Obstfeld (1994) with permanent innovations, and a third one that de-
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parts from the i.i.d. structure and uses an ARIMA process for the consumption series

as proposed by Reis (2009), which we are able to incorporate into our framework with

the use of the Beveridge-Nelson decomposition (Beveridge and Nelson, 1981; Issler et al.,

2008; Guillén et al., 2014).

We then proceed to estimate the parameters in our welfare decomposition but hit a

measurement challenge: since the laissez-faire consumption is not observable, we need

to identify θ. For this task, we resort to the more novel literature of identification in

macroeconomics and couple it with the relevant facts of US macroeconomic history. Our

choice of data is an augmented version of the historical consumption series provided by

Barro and Ursúa (2010), which shows a significant decrease in volatility after WWII. Such

a pattern is identified and confirmed by (i) the established literature on the topic; (ii) the

visual inspection of the data; and (iii) a statistical test (ICSS) that finds structural breaks

in the variance of time series, which points to 1947 as the only observation in our sample

when such a break occurs.

These three pieces of evidence allow us to design our identification strategy: we divide

the sample into pre- and post-war periods with distinct measured volatilities, and thus

two θ’s, attributing the difference between them to the larger role and presence of stabi-

lization policies in the second period. We then assume that the laissez-faire consumption

volatility remains unchanged during the whole sample and that the span of stabilization

policies in the first period, θ1, can be considered as given at a low level due to the incip-

ient presence of stabilization policies in the pre-war period.1 Such a discontinuity-based

strategy enables us to pin down the span of stabilization policies from 1947 until today

conditional on θ1, i.e. the mapping θ2(θ1), for θ1 ∈ [0, 1]. We can then use this mapping to

estimate θ̂2 and plug it as an input in our decomposition of the welfare costs of business

cycles.

Assuming a log-normal form for consumption, we obtain the results for all the three

aforementioned shock structures, but our preferred specification is the one stemming

from the ARIMA process, which, among three considered, best models and fits the time
1In our empirical approach we consider a set with distinct possible values for θ1 defined at a chosen

grid.
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series of consumption. The first difference of the series follows an AR(1) process after

1947, making it straightforward to use the Beveridge-Nelson decomposition to obtain

our estimates. We find that the span of stabilization policies, θ̂2, smooths 61 to 73 percent

of the laissez-faire consumption shocks in the post-war period.

Our identification strategy and statistical testing essentially reduce structural changes

in the economy after 1947 to a unique change of value in θ that remains constant until

the final period of the sample. There are several potential explanations for the observed

reduction in post-war consumption volatility that could lie beyond the overarching um-

brella of a unique paradigm shift of stabilization policies. In order to consider such alter-

native explanations and allow more flexibility to our approach, we also estimate a time-

varying θ. Inspired by Stock and Watson (2007), we use an analogous approach to their

exercise on changes in the post-war univariate inflation process and estimate a process

with stochastic volatility for our consumption series after 1947. With this methodology,

we are able to recover a stochastic θ̂2,t for the period, relaxing part of our identification

strategy. We find that the estimated time-varying span smooths consumption in a range

that gravitates close to our initial estimate for the whole post-1947 period, with its being

being lower than 76 percent.

Given the closeness of the time-varying θ estimates to the values obtained in our ini-

tial two-period approach, we are able to return to them and select one of the initially

estimated values for θ̂2. This then allows us to use our theoretical decomposition, plug

in the estimated values, and compute the different welfare costs. We find the total cost

of economic fluctuations to be 11 percent of lifetime consumption. Close to 82 percent of

such costs are already covered by stabilization policies, yielding that more than 9 percent

of the smoothed lifetime consumption is left unveiled if one does not take into account

the benefit of ongoing stabilization policies. Since the residual 1.8 percent of the costs still

to be smoothed is the easiest measure to compare with the value that would be implied

by the literature in our framework, we are able to find a residual cost that is two times

higher than the usual numbers even when taking into account that observed consumption
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is partially smoothed.2

In order to check the robustness of our analyses, we tackle the possibility that the

log-consumption series has a structural break that we should consider beyond the one

identified in its volatility. We conduct a Bai-Perron test (Bai and Perron, 2003) and find

that there is one break in the first difference of log-consumption in 1934. We adjust the

sample, run the same regression, and find a decrease of only 1 percentage point in θ̂2,

reinforcing our initial findings.3

Roadmap. The paper is organized as follows. Section 2 reviews the literature and dis-

cusses our contribution. Section 3 describes the model and lays out our theoretical results.

Section 4 applies the results of the previous sections to three different applications. Sec-

tion 5 outlines our empirical approach and describes our identification strategy. Section 6

shows our estimation results and an exercise with a time-variant θ. Section 7 uses the esti-

mates and shows the computed results for welfare costs. Section 8 discusses a robustness

exercise on structural breaks. Finally, Section 9 concludes the paper.

2 Related Literature

Our paper is embedded in three major strands of the literature in macroeconomics: (i) the

large body of work concerned with the calculus of the welfare costs of business cycles; (ii)

the literature that studies the measurement of historical macroeconomic data; and (iii) the

literature of identification in macroeconomics.

Several papers build on Lucas’s departing point and relax some of his assumptions.

For example, Obstfeld (1994) switches the original transitory shocks for permanent ones

and focuses on the interaction with recursive preferences; Alvarez and Jermann (2004)

2The large welfare benefits of ongoing policies, were, in fact, anticipated in Otrok (2001): “The estimates
provided here, and elsewhere, are aimed at measuring the gains from removing the residual risk. The gains
to moving from a regime in which there are no efforts to smooth aggregate volatility to the current regime
may be very large”.

3We conduct further robustness analyses on the estimation procedure of θ2. In Appendix F, we adjust
the sample used in the regression with the removal of the inter-war period and also with the original data
sample by Barro and Ursúa (2010). The results are similar and consistent with our main analysis.
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estimates the costs using asset prices; Reis (2009) further develops the time-series aspects,

while Issler et al. (2008) and Guillén et al. (2014) combine both types of shocks.4 An-

other block in this body departs from the representative agent setting and estimates the

costs under incomplete markets and heterogeneous agents such as in İmrohoroğlu (1989),

Krusell and Smith Jr. (1999), Storesletten et al. (2001), and De Santis (2007). More recently,

Hai et al. (2020) include memorable goods5 and Constantinides (2021) focuses on the role

of idiosyncratic shocks faced by households that are unrelated to the business cycle. Our

contribution here is twofold: first, we bring attention to the fact that the empirically ob-

served consumption series is a partially smoothed series and connect it to its potential

consequences for the calculation of welfare costs; second, we propose and compute a

new and tractable decomposition that allows us to disentangle and reveal the reach of the

ongoing stabilization policies.

We conduct our data analysis grounding it in the literature on macroeconomic his-

tory. Our sample is built directly from the historical data compiled by Barro and Ursúa

(2010) and when developing our novel identification strategy, we base it on Barro and

Ursúa (2008)’s observation that for the OECD economies, there is a change in consump-

tion volatility in the post-war period. Our approach also dialogues with the seminal work

of Romer (1986) and Balke and Gordon (1989) that documents the challenges faced when

measuring the volatility of macroeconomic aggregates, and we show how our methodol-

ogy can reconcile improvements in both measurement and stabilization after WWII. Here

we add our estimation of the unique structural break in the volatility of consumption

in 1947 as measured by the Inclan and Tiao (1994) test that is used in our identification

exercise.

We also view our work as building on the effort of calculating the costs of business

cycles, with critical attention to measurement and identification that often appeared in

what became known as the “disasters” approach in the literature. We resort to Nakamura

et al. (2013)’s insight of using the variation in the volatility of the consumption series to

4For an in-depth early discussion of this literature, see Barlevy (2005), who discusses other seminal
references such as Dolmas (1998).

5A good, as defined in Hai et al. (2020), is “memorable if a consumer draws utility from her past con-
sumption experience.”
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better identify the shift in the role of stabilization policies. Moreover, we build on Naka-

mura et al. (2017) in our use of both transitory and permanent formulations for the shocks

in conjunction with a time-varying volatility for the consumption series. Our paper con-

tributes here by using different methodologies to model the measured time-series aspects

of the consumption data. For example, we use the Beveridge-Nelson decomposition to

tie back our methodology to its ARIMA components and also, to the extent of our knowl-

edge, we are the first to connect the Stock and Watson (2007) methodology for the inflation

process to its time-varying volatility.

Since we find large values for our estimates of welfare costs, we are also connected

with the intersection of the disasters and welfare costs literature. For instance, Jorda et al.

(2020) find that substantial costs may arise from a novel estimate of frequent and small

disasters.6 In addition, by considering the asymmetric nature of economic fluctuations,

Dupraz et al. (2019) develop a plucking model of business cycles and find welfare gains

from eliminating economic fluctuations that are an order of magnitude larger than in the

standard models.

3 Model

3.1 Environment and Definitions

The economy is populated by a representative consumer whose lifetime utility is given

by E0
[
∑∞

t=0 βtu(Ct)
]
, where Ct is consumption in period t, β ∈ (0, 1) is an intertempo-

ral discount factor, u(·) is the instantaneous utility function, and E0[·] is the expectation

operator conditional on the information set I0.7 We begin with a few definitions:

Definition 1. Define C̃t as consumption with minimal intervention and incipient stabilization
policies. Then {C̃t}∞

t=0 is the laissez-faire consumption sequence.

6Other examples in this literature are Barro and Jin (2011) and Gourio (2012).
7We assume that the expectation is taken before the realization of any uncertainty in period 0, as in some

calculations done by Obstfeld (1994) and Reis (2009). In that sense, consumption in that period is treated
as a stochastic variable. Under this assumption we compare the expected utility in two worlds where the
agent is still uncertain about all consumption flows, as in Lucas (1987).
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Definition 2. Define C̄t ≡ E0[C̃t]. Then {C̄t}∞
t=0 is the riskless consumption sequence.

We can now define the welfare cost of the total economic fluctuations as the constant

λT > 0 that solves the following condition:

E0

[
∞

∑
t=0

βtu
(
(1 + λT)C̃t

)]
=

∞

∑
t=0

βtu (C̄t) . (1)

The parameter λT measures the constant compensation required by the consumer to be

indifferent between the adjusted laissez-faire, {(1+ λT)C̃t}∞
t=0, and the riskless consump-

tion sequences.

Given that the observed time series on consumption is subject to the ongoing stabi-

lization policies, we can view it as the combination of two extreme cases: (i) the (non-

observed) consumption series in the absence of any stabilization policies, C̃t, and (ii) the

(non-observed) perfectly smoothed consumption, C̄t. We then model the (observed) par-

tially smoothed consumption as a weighted geometric average:

Ct (θ) ≡ C̄θ
t C̃1−θ

t , (2)

where the parameter θ ∈ [0, 1] measures the degree of consumption smoothing. Thus, θ

can be interpreted as the span of the stabilization power of governmental policies. This

formulation is inspired by the one used in Alvarez and Jermann (2004), in which the

their total cost function has useful properties that allow its estimation using asset prices,

is directly comparable to the one in Lucas (1987) and is consistent with incomplete in a

first-order approximation.

We can now define the benefit of the ongoing stabilization policies as the constant

λB > 0 that solves the following condition:

E0

[
∞

∑
t=0

βtu
(
(1 + λB)C̃t

)]
= E0

[
∞

∑
t=0

βtu(Ct(θ))

]
. (3)
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The parameter λB is the compensation required by the consumer to be indifferent between

the adjusted laissez-faire consumption sequence and the effective consumption sequence,

{Ct(θ)}∞
t=0.

Finally, we can compute what is left to be stabilized by defining the welfare cost of the

residual economic fluctuations as the constant λR > 0 that solves the following condition:

E0

[
∞

∑
t=0

βtu
(
(1 + λR)Ct(θ))

)]
=

∞

∑
t=0

βtu (C̄t) . (4)

The parameter λR measures the constant compensation required by the consumer to

be indifferent between the adjusted partially smoothed consumption sequence {(1 +

λR)Ct(θ)}∞
t=0 and the aforementioned riskless sequence.

Figure 1 summarizes our modelling by showing where each parameter and measure

defined is located in a spectrum of consumption that spans the highest to the lowest level

of risk.

Figure 1: Decomposition of the welfare cost of the total economic fluctuations

C̃t E0
[
C̃t
]
= C̄tCt(θ) ≡ C̄θ

t C̃1−θ
t

Laissez - Faire
Consumption

Observed
Consumption

Riskless
Consumption

the benefit of the ongoing
stabilization policies− λB

the welfare cost of the total
economic fluctuations− λT

the welfare cost of the residual
economic fluctuations− λR
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3.2 Assumptions

In order to calculate λT, λB, and λR and guarantee tractability, we assume a log-normal

process for C̃t, which implies that Ct(θ) is also log-normal. Following Lucas (1987), we

assume a CRRA instantaneous utility with parameter γ:

u(C) =


C1−γ

1− γ
, if γ > 1

ln(C), if γ = 1
(5)

We also need assumptions that guarantee that the sums in conditions (1), (3), and (4)

are all finite. They are:

Assumption 1. Log-normal consumption process: C̃t = α0(1 + α1)
tXt, where Xt = ext−0.5σ2

t ,
with xt|I0 ∼ N

(
0, σ2

t
)
.

Assumption 2. The constant Γ ≡ β (1 + α1)
1−γ ∈ (0, 1).

Assumption 3.
∞
∑

t=0
Γt exp

{
−0.5γ (1− γ) σ2

t
}
< ∞.8

Under Assumption 1, riskless consumption is given by C̄t = E0[C̃t] = α0(1 + α1)
t

and is deterministic. Furthermore, C̃t = C̄tXt, and the partially smoothed consumption

can be rewritten as Ct (θ) = C̄tX1−θ
t . From this formulation it is easy to see that the

larger the parameter θ, the less important is the stochastic part of the partially smoothed

consumption.

3.3 Theoretical Results

We can now derive closed-form solutions for the parameters λB, λR and λT. Propositions

1, 2, and 3 establish, respectively, each of these parameters. The final step consists of using

8Note that ∑∞
t=0 Γt exp

{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t
}
< ∑∞

t=0 Γt exp
{
−0.5γ (1− γ) σ2

t
}

if γ > 1.
This result ensures that the λ’s are finite in some of our results.
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the propositions to obtain our main decomposition of the welfare cost of total economic

fluctuations. All proofs are shown in Appendix A.

Proposition 1. Under Assumptions 1 and 3 the benefit of the ongoing stabilization policies is
given by

λB =


exp

{
θ

1−β
2 ∑∞

t=0 βtσ2
t

}
− 1, if γ = 1[

∑∞
t=0 Γt exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t }
∑∞

t=0 Γt exp{−0.5γ(1−γ)σ2
t }

] 1
1−γ

− 1, if γ > 1
(6)

Proposition 2. Under Assumptions 1, 2, and 3 the welfare cost of the residual macroeconomic
fluctuations is given by

λR =


exp

{
(1− θ)1−β

2 ∑∞
t=0 βtσ2

t

}
− 1, if γ = 1[

∑∞
t=0 Γt

∑∞
t=0 Γt exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t }

] 1
1−γ

− 1, if γ > 1
(7)

Proposition 3. Under Assumptions 1, 2, and 3 the welfare cost of the total economic fluctuations
is given by

λT =


exp

{
1−β

2 ∑∞
t=0 βtσ2

t

}
− 1, if γ = 1[

∑∞
t=0 Γt

∑∞
t=0 Γt exp{−0.5γ(1−γ)σ2

t }

] 1
1−γ

− 1, if γ > 1
(8)

We can now state our main result in Theorem 1 below: the decomposition of the wel-

fare cost of total economic fluctuations.

Theorem 1. Under Assumptions 1 to 3 and CRRA utility (5), there is a decomposition of the
welfare cost of total economic fluctuations in the form

1 + λT =
(

1 + λB
) (

1 + λR
)

. (9)
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4 Applications

In this section we characterize λT, λB, and λR using three different shock structures for the

consumption process: the classic ones of Lucas (1987) with transitory shocks and of Ob-

stfeld (1994) with permanent shocks, and one with an ARIMA process for consumption

as proposed in Reis (2009) using the Beveridge-Nelson (BN) decomposition (Beveridge

and Nelson, 1981; Issler et al., 2008; Guillén et al., 2014). The details of all calculations are

shown in Appendix B.

Example 1 - Transitory Shocks (Lucas, 1987): Define Ct = α0(1 + α1)
te−0.5σ2

ε +xL
t , where

xL
t |I0 ∼ N (0, σ2

ε ). Hence,

λT =


exp

{
1
2

σ2
ε

}
− 1, if γ = 1

exp
{γ

2
σ2

ε

}
− 1, if γ > 1

(10)

λB =


exp

{
θ

2
σ2

ε

}
− 1, if γ = 1

exp
{

γ

2
σ2

ε −
1
2
(1− θ) (θ + γ− γθ) σ2

ε

}
− 1, if γ > 1

(11)

λR =


exp

{
1− θ

2
σ2

ε

}
− 1, if γ = 1

exp
{

1
2
(1− θ) (θ + γ− γθ) σ2

ε

}
− 1, if γ > 1

(12)

For this process, the variance in Assumption 1 becomes σ2
t = σ2

ε . Consequently, Assump-

tion 3 is satisfied as long as Assumption 2 holds.

Example 2 - Permanent Shocks (Obstfeld, 1994): Define Ct = α0(1 + α1)
te−0.5σ2

ε +xO
t ,

where xO
t = ∑t

i=0 εi, εi|I0 ∼ N (0, σ2
ε ).9 Thus,

9In some calculations, Obstfeld (1994) treats C0 as known. We consider the case where the expectation is
taken before the realization of the shock ε0.

11



λT =


exp

{
1
2

1
1−β σ2

ε

}
− 1, if γ = 1

exp
{

0.5γσ2
ε

} [1−Γ exp{−0.5γ(1−γ)σ2
ε }

1−Γ

] 1
1−γ

− 1, if γ > 1
(13)

λB =


exp

{
θ 1

2
1

1−β σ2
ε

}
− 1, if γ = 1

exp{0.5γσ2
ε }

exp{0.5(1−θ)[γ+θ−θγ]σ2
ε }

[
1−Γ exp{−0.5γ(1−γ)σ2

ε }
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

ε }

] 1
1−γ

− 1, if γ > 1
(14)

λR =


exp

{
(1− θ) 1

2
1

1−β σ2
ε

}
− 1, if γ = 1

1
exp{0.5(1−θ)[γ+θ−θγ]σ2

ε }

[
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

ε }
1−Γ

] 1
1−γ

− 1, if γ > 1
(15)

In this case, σ2
t = Var0

[
∑t

i=0 εi
]
= (t + 1)σ2

ε , and the condition Γ exp{−0.5γ(1− γ)σ2
ε } <

1 is sufficient for Assumption 3 to be valid.

Example 3 - ARIMA-BN Process (Reis, 2009): Define

Ct = α0(1 + α1)
t exp

{
−1

2
σ2

xBN
t

}
exp

{
xBN

t

}
(16)

where, to obtain xBN
t , we apply the Beveridge-Nelson decomposition. We follow these

steps:

1. Given a process, Ct = f (t) + ut, where f (t) is deterministic and (1− L)ut = ψ(L)εt,

with ψ (L) = ∑∞
j=0 ψjLj. Define ϕj = −∑∞

i=j+1 ψi.

2. Then, xBN
t = ψ (1)∑t

j=0 ε j + ∑t
j=0 ϕjεt−j, with ε j|I0 ∼ N (0, σ2

ε ).

3. We follow Issler et al. (2008) and rewrite σ2
xBN

t
as σ̃2

xBN
t

= ρ0 + ρ1t, where

ρ0 ≡ ψ (1)2 σ2
ε + 2ψ (1)

∞

∑
j=0

ϕt−jσ
2
ε +

∞

∑
j=0

ϕ2
t−jσ

2
ε and ρ1 ≡ ψ (1)2 σ2

ε (17)

4. Hence, since we know xBN
t ∼ N

(
0, σ2

xBN
t

)
and can approximate σ2

xBN
t

with σ̃2
xBN

t
.
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We can then compute the λ’s for this structure of shocks:10

λT =


exp

{
1
2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp {0.5γρ0}
[

1−Γ exp{−0.5γ(1−γ)ρ1}
1−Γ

] 1
1−γ , if γ > 1

(18)

λB =


exp

{
θ
2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp{0.5γρ0}
exp{0.5(1−θ)(θ+γ−γθ)ρ0}×

×
[

1−Γ exp{−0.5γ(1−γ)ρ1}
1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)ρ1}

] 1
1−γ − 1, if γ > 1

(19)

λR =


exp

{
1−θ

2

(
ρ0 +

β
1−β ρ1

)}
− 1, if γ = 1

exp {0.5 (1− θ) (θ + γ− γθ) ρ0}×

×
[

1−Γ exp{−0.5(1−γ)(1−θ)(θ+γ−γθ)ρ1}
1−Γ

] 1
1−γ − 1, if γ > 1

(20)

In this case, Γ exp{−0.5γ(1− γ)ρ1} < 1 is sufficient for Assumption 3 to be valid.

5 Empirical Approach

In order to estimate the parameters of the underlying consumption process and compute

λT, λB and λR, we have to be specific in our assumptions about the structure of the shocks.

Following the examples in the last section, we consider the three aforementioned cases:

transitory, permanent, and ARMA shocks. In this section, we first develop the regressions

to be estimated in the data and characterize the challenge present in the identification of

the span of stabilization power, θ, as well as the other parameters of our setting. We then

present algebraically and visually the strategy we implement to overcome this difficulty,

allowing us to pin down the values to be used in our results.

10See some omitted calculations for the steps above and the characterization of the λ’s in Appendix B.3
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5.1 Estimation

5.1.1 Transitory Shocks

Assuming transitory shocks under Assumption 1 and applying the logarithm to both

sides of equation (2), we have that:

log (Ct(θ)) = log (α0)− (1− θ)0.5σ2
ε + t log (1 + α1) + (1− θ)εt. (21)

We can reinterpret (21) as a time-series regression of log-per capita consumption ct with

coefficients π0 and π1, and error ut:

log(ct) = π0 + π1t + ut, (22)

Note that an identification problem arises when we try to estimate the parameters in

equation (21) since (α0, θ, σ2
ε ) are all simultaneously mapped to π0. Furthermore, σ2

ε is

scaled by (1− θ), which lies in the background of ut. Only parameter α1 is well-identified

and can be directly inverted from the estimates since α1 = exp (π1)− 1.

5.1.2 Permanent Shocks

Considering the case where permanent shocks hit consumption, we have that:

log (Ct(θ)) = log (α0)− (1− θ)0.5tσ2
ε + t log (1 + α1) + (1− θ)

t

∑
i=0

εi. (23)

Taking first differences,

∆ log (Ct(θ)) = log (1 + α1)− (1− θ)0.5σ2
ε + (1− θ)εt. (24)
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We can re-write equation (24) as:

∆ log(ct) = π0 + ut. (25)

The same identification issue arises: (α1, θ, σ2
ε ) are behind π0 with σ2

ε scaled by (1− θ).

5.1.3 ARIMA-BN Process

Similarly, we have that:

∆ log Ct (θ) = log (1 + α1)− 0.5ρ1 + (1− θ)∆xBN
t (26)

Hence,

∆ log Ct (θ) = log (1 + α1)− 0.5ψ (1)2 σ2
ε + ψ (L) ε̃t (27)

where ε̃t ∼ N
(

0, (1− θ)2 σ2
ε

)
.

Here we use the fact that the per capita consumption series has a unit root and its first

difference is stationary.11 Hence, we can switch to the ARMA(p, q) form:

Φ (L)∆ log Ct (θ) = Φ (1)
[
log (1 + α1)− 0.5ψ (1)2 σ2

ε

]
+ Θ (L) ε̃t (28)

At this step we estimate an ARMA(p, q) with an intercept for the first difference of the

observed log-consumption series. After that, we have Φ(L) and Θ(L) and invert the

autoregressive lag polynomial to obtain:

∆ log Ct (θ) =
[
log (1 + α1)− 0.5ψ (1)2 σ2

ε

]
+ ψ (L) ε̃t (29)

11The series is I(1) as identified by the ADF, PP, KPSS, and DF-GLS tests.

15



Which takes us back to the format shown in the time-series regression (25), where ψ(L) =

Θ(L)/Φ(L) was obtained in the estimation process, yielding us φ(1) and ψ(1). This

leaves us again with the scaling factor (1− θ) in the way of the identification of the pro-

cess parameters.

5.2 Identification

From our previous characterization of the identification problem, we observed that the

scaling of the structural parameters by θ means that the consumption series is partially

smoothed due to the ongoing stabilization policies. This means that if we knew θ (or σ2
ε )

in advance, it would be possible to recover all parameters in our consumption model by

running a simple regression like the ones shown previously. Since this is not possible, we

need to design an identification strategy.

Our strategy consists of exploring an observed variation in the volatility of the histori-

cal consumption series in order to identify θ. More precisely, we profit from this variation

to identify the mapping induced by distinct measurements to different time-dependent

values of θ. We use a combination of three pieces of evidence: (i) the empirical fact docu-

mented in the literature that per capita consumption in the US became less volatile after

WWII; (ii) a visual analysis in which we plot the series and observe a potentially unique

break in the graph coinciding with the post-war period; and (iii) a statistical result in

which we conduct a test to find any breaks in the variance series.

To apply this strategy in the data, we need to use a long series of consumption for the

US. Our choice is to build on the data by Barro and Ursúa (2010). This database contains

annual observations of US per capita consumption between 1834 and 2009. We complete

the sequence of consumption between 2010 and 2019, maintaining their methodology and

using the series available from the BEA’s NIPA. Finally, we set the data in real terms to

2012.12

12We use the series “Personal Consumption Expenditures” in Table 1.1.5, the price index series for the
same category in Table 1.1.4, and the series“Population (midperiod thousands)” in Table 2.1 (US Bureau of
Economic Analysis, 2021a,b,c).
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For the first factor, we follow Lucas (1987), Barro and Ursúa (2008), and Nakamura

et al. (2017), who discuss and document the fact that the end of the Second World War

marks a substantial decrease in the volatility of consumption over time, exhibiting a het-

eroskedastic pattern. The second piece of evidence with the visual analysis is depicted in

Figure 2. For the third factor, we apply the iterated cumulative sums of squares (ICSS)

algorithm developed by Inclan and Tiao (1994) to detect breaks in the variance of con-

sumption growth. We use a 5 percent significance level to test for multiple breaks.13 The

ICSS algorithm identifies only one break in the variance of consumption growth indicat-

ing a sudden decrease in the volatility of consumption growth after 1947. We then profit

from the approach of discontinuity-based identification as discussed in Nakamura and

Steinsson (2018) and assume that no other factors, aside from the changes in stabilization

policies, that affect the consumption series of the US change discontinuously at the end

of WWII.

In formal terms, suppose that we have two periods of time, 1 and 2, and that Var(εt) =

σ2
ε in both periods, but we observe a lower volatility in consumption in period 2. All else

constant, we can attribute this difference in the measured volatility to a different span of

stabilization power of policies in those periods. To see that, let θi and σ̂2
u,i be, respectively,

the stabilization power and the estimated variance of ut in period i ∈ {1, 2}. Thus, we

have that σ̂2
u,i = (1− θi)

2σ2
ε . If we knew θ1 in advance, we could pin down θ2 using the

following identifying equation:

θ̂2 = 1− (1− θ1)

√√√√ σ̂2
u,2

σ̂2
u,1

. (30)

Hence, this strategy allows us to identify the mapping θ2(θ1), for θ1 ∈ [0, 1]. The

remaining parameter to delineate in the strategy is θ1. For that, a natural candidate would

be a period of incipient stabilization policies, i.e., one in which θ1 is close to zero.

13We consider the critical value of 1.30 reported in Table 1 of Inclan and Tiao (1994) for a sample size of
200, which is the number closest to our sample. Considering the asymptotic value for the test (1.358) does
not change our results.
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In Figure 2, we show our identification strategy at work in the plot of the historical

series of consumption. The top panel 2a shows the series in its log level for the identi-

fication with transitory shocks and the bottom panel 2b shows the series’ first difference

to accommodate the permanent shocks and ARIMA-BN process approaches as shown in

equations (24) and (29).14

If we divide the series into two periods, pre- and post-war, there is a substantial de-

crease in the measured standard error after 1947. Focusing on the series with first differ-

ences in the bottom panel, for the period between 1835 and 1946, we have that σ̂u = 0.046,

which then suffers a sharp decrease of more than 60 percent of its value, to σ̂u = 0.018,

after WWII until today. With such a discontinuous decrease in the volatility of the series,

we can plug these measures into equation (30) and, assuming θ1 = 0.20, for instance, we

find that θ̂2 = 0.69. This indicates a share of 69 percent of smoothed consumption in the

observed series post-1947.

14In Appendix C, we plot in Figure 3 the visual identification for transitory consumption shocks.
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Figure 2: Time series of per capita consumption for the US between 1835 and 2019.

Year
1840 1860 1880 1900 1920 1940 1960 1980 2000

7.5
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8.5
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9.5
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10.5

11

← 1947

σ̂u = 0.080

σ̂u = 0.050

θ̂2 = 0.50

log consumption
linear trend
band limit

(a) Time series of log consumption.

Year
1840 1860 1880 1900 1920 1940 1960 1980 2000

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

σ̂u = 0.046

σ̂u = 0.018

← 1947

θ̂2 = 0.69

consumption growth
average growth
band limit

(b) Time series of consumption growth.

Notes: The figure shows the time series for per capita consumption for the US between 1835 and 2019 with
our augmented sample of the Barro and Ursúa (2010) data. There are two panels: the top one uses the series
in log levels and the second in growth. The vertical line marks the year 1947, at the end of WWII. We report
the standard errors for the two sub-periods generated by this line along with the average and band limits
equivalent to 2σu. In Appendix C, we include Figure 3 showing the visual identification of the data in panel
2a in an equivalent format to the data in panel 2b.

A critical point for our measurement of the decrease in consumption’s standard error

19



is the seminal argument by Romer (1986) about the spurious decrease in the unemploy-

ment rate’s volatility after 1948, which was also emphasized for GNP in Balke and Gor-

don (1989) and revisited for GDP in the context of OECD economies by Barro and Ursúa

(2008). The first differing factor in our approach is that we use the series for consumption

collected by the BEA since 1929. On top of that, with our augmented sample of Barro

and Ursúa (2010) data, we add an extra 90 years to the length of Romer (1986)’s original

sample.

A second relevant consideration is the fact that our methodology allows us enough

flexibility for a degree of discretion in the interpretation of the span during the incipient

stabilization period. In equation (30), the greater θ1, the smaller the impact of the volatility

ratio in the identification of the second period’s span. In that sense, the choice of θ1

can be made larger to reflect both a historically motivated share of riskless consumption

and to also take into account a certain degree of measurement error that undermined the

mapping of such stabilization to the collected data.15

Finally, a pertinent last concern is the fact that the systematic publication of the Na-

tional Accounts in the US in a format similar to today’s NIPA, started precisely in July of

1947 as a supplement of the Survey of Current Businesses (SCB), coinciding with the year

where we find a structural break in the series for the variance of consumption growth.

This first publication contained data spanning 1929-1946, which were subject to minor

revisions and additions in the fifties until a first comprehensive revision in 1965 (U.S. Bu-

reau of Economic Analysis, 2001). With at least 17 years of standardized data prior to

the cutoff found by the ICSS in 1947, we understand that the algorithm is not picking

an idiosyncratic historic event in the compilation of national accounts statistics. Further-

more, in work using the same data set, Barro and Ursúa (2008) find that the last matched

“disaster” contraction of both consumption expenditure and GDP in the US happened in

1947 and Nakamura et al. (2013) find only one disaster episode during 1930-35, providing

more evidence of the switch in the volatility regime after 1947.

15Here we also develop another subtle point mentioned in Lucas’s original analysis. In Lucas (1987),
footnote 4, there is a mention of Romer (1986) in which the author acknowledges that his calculations do
not incorporate her findings and may rely on the 1930s experience.
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6 Empirical Results

6.1 Estimation

We run regressions (22) and the versions of (25) for permanent shocks and ARIMA-BN

process and obtain their estimated coefficients as well as the error volatility of the two

distinct periods, σ̂2
u,i. We compute the span of stabilization power, θ̂2(θ1), for different

levels in the grid θ1 ∈ {0, 0.1, 0.2, 0.3}, to allow different policy efficiencies in the initial

period. With these values, we can then directly compute σ̂2
ε = σ̂2

u,1/(1− θ1)
2.

For the remaining parameters, in the case of transitory shocks we have that α̂1 =

exp(π̂1) − 1. For permanent shocks, α̂1 = exp
(
π̂0 + (1− θ̂2)0.5σ2

ε

)
− 1. Finally, for the

case of the ARIMA-BN process we have that α̂1 = exp
(
π̂0 + (1− θ̂2)0.5ψ̂(1)2σ2

ε

)
− 1.

Table 1 shows the results of our estimations.
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Our preferred shock structure is the one with the ARIMA-BN process, since it is the

one that most accurately models the data and allows for a more flexible structure without

relying on the i.i.d. assumption of either the level or the first difference of the series. We

also focus the discussion on the results associated with our preferred choice of initial span,

θ1 = 0.20, since it allows, as mentioned previously, for a combination of some degree

of stabilization power and measurement error in the pre-1947 sample. The estimated

span is 0.4985 with transitory shocks, 0.7027 with permanent shocks, and 0.6814 with the

ARIMA-BN process.16

These results show that the average post-war reach of stabilization policies is far from

trivial and more than tripled after WWII. The results naturally vary according to the

choice of θ1, but with moderate sensitivity: had we considered a total absence of stabiliza-

tion policies in the pre-war sample, i.e., θ1 = 0, we would have that the post-war smooth-

ing factor would be 61 percent for the ARIMA-BN process. Moreover, for all shocks, as

we increase the value of θ1, the implied increase in θ̂2 is incrementally smaller, further

contributing to the robustness of the range estimated. Another feature of our strategy

shown in Figure 2 is the strict division of the data in 1947. We relax the 1947 cutoff by

conducting robustness checks with different windows of time in Section 8 and Appendix

F.

6.2 Time-Varying θ

One critical point in our identification strategy is the sharp division of the whole time

series into only two periods, pre- and post-war. More importantly, the period after 1947

exhibited a number of structural changes that fundamentally altered the US economy.

Some of these could be the rise of the service industry and a sectoral change away from

agriculture, skill-biased technological changes, or expansion of the social safety net and

the welfare state. All of those could have impacted the earnings process and the reduction

16Note that since the level of the series is integrated, we cannot consistently estimate parameters {π0, π1}
with the OLS regression in Table 1. That is another reason for our preferred choice of shock specification
to be the one with the ARIMA-BN process as mentioned in the text. This point is also emphasized in Reis
(2009).
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of risk in the consumption process, making it a strong assumption that the majority of the

factors behind the substantial decrease in σ̂2
u,2 could be loaded on θ fixed over time.

In order to tackle this challenge, we relax part of our estimation approach and make

use of a methodology that allows us to estimate a time-varying, σ̂2
u,t, and thus a time-

varying, θ̂t. First, we focus only on the post-1947 period, which is the part of the sample

that is most relevant to capture movements in the structural parameters of the consump-

tion process. As discussed before, it is well-documented by the literature that the period

prior to 1947 was one of incipient stabilization policies and we have already been agnos-

tic in our strategy, within the incipient territory, by using a grid for θ1 in our previous

estimation. Then, inspired by Stock and Watson (2007) analysis of the post-war quarterly

inflation process with a parsimonious univariate process, we adapt their methodology to

our problem and rewrite our post-war consumption process with a stochastic volatility

model. This allows us to work with the desired time-varying variance.

Assume then that the first difference of log-consumption per capita follows a standard

stochastic volatility model:

∆ log(ct) = π0 + uc
t , uc

t ∼ N (0, eht) (31)

ht = µh + φh(ht−1 − µh) + εh
t , εh

t ∼ N (0, ω2
h) (32)

where h is the time-varying component of consumption volatility and the process is ini-

tialized with h1 ∼ N (µh, ω2
h/(1− φ2

h)).

We estimate this process with a Bayesian approach using a Markov Chain Monte Carlo

(MCMC) method developed by Chan and Grant (2016). We use years 1947-2019 and also

multiply the level by 100 for the simulations. To make the computations, we need to start

with a choice of suitable priors with a suitable degree of dispersion. Our choices of priors

for the parameters are:
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π0 ∼ N (0, 10) µh ∼ N (1, 10) (33)

φh ∼ N (0.9, 0.12)1(|φh| < 1) ω2
h ∼ IG(10, 0.36)

where IG(·, ·) denotes an inverse-gamma distribution.

Table 2 shows the posterior means obtained in the Bayesian estimation of the four

parameters used in the process:

Table 2: Posterior means of the stochastic volatility process.

Parameter Posterior mean Std. deviation

π0 1.98 0.20
µh 0.96 0.48
φh 0.88 0.08
ω2

h 0.04 0.01

Notes: The table shows the posterior means and the
standard deviations (in parenthesis) for the posterior
distributions of the four parameters used in the stochas-
tic volatility process described in equations (31) and
(32). Estimates were obtained using the method pro-
posed in Chan and Grant (2016).

Given our estimates, we compute the quantiles 16, 50 and 84 of the posterior distri-

bution of the stochastic volatility, i.e., h16, h50, and h84. We use the median, h50, as the

main reference point for the implied time-variant θ̂2,t and the other quantiles to build the

credible interval and generate the dispersion bands. Using the same approach as in the

previous exercise, the values reported consider θ1 = 0.2 and σ̂u,1 = 0.0021. Figure 2 shows

our results with the time series for the span:17

17In Appendix D, we include Figure 4 with the estimated time series for the stochastic standard deviation,√
eh50

t .
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Figure 2: Estimated θ̂2,t using stochastic volatility.

1950 1960 1970 1980 1990 2000 2010

year

0.5

0.55

0.6
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Notes: The figure shows the estimated time series for θ̂2,t. The solid black line shows the values associated
with the median quantile of the estimation, while the dashed lines indicating the bands of the credible
interval are associated with quantiles 16 and 84. The solid red line shows the θ̂2 obtained in the estimation
shown in Table 1. These values were obtained from the estimation of the stochastic volatility process for
the first difference of log-consumption described in equations (31) and (32). The series spans from 1947
through 2019 and is computed considering θ1 = 0.2 and σ̂u,1 = 0.0021. In Appendix D, Figure 4 shows the

estimated time series for the stochastic standard deviation
√

eh50
t .

We can observe that the time series for the θ̂2 estimated from the consumption process

with stochastic volatility ranges from around 65 percent to 77 percent. These values do not

lie far from our original estimated value, 69 percent, with the two-period identification

methodology. For a large part of the time series, namely, from the end of WWII until

the late 80s, the values for the span remained almost flat, gravitating around the center

value of 69 percent. Starting in the early 90s and beyond, the value for time-varying θ

starts to climb, potentially settling at a new, higher level, around 75 percent, with a few

oscillations around 2010.

These results and the behavior of the series tell us that our initial strategy, along with

the estimate we obtained with it, are not far from the ones obtained with a more com-
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plex and flexible fitting of the data and can then suffice for being used in our welfare cost

calculations. This is not only reassuring but convenient, as our proposed methodology

can accommodate only one span at a time. Second, the climb in the value of θ̂2 starting

in the early 1990s until today is consistent with the overall compression of the estimated

consumption volatility on this period shown in 2b, which also exhibits an increased per-

sistence, a factor that might be attributed to the “Great Moderation” (Stock and Watson,

2002). This further highlights the existence of ongoing stabilization policies that are re-

flected in a less volatile consumption process, exactly the effect that the implied θ aims to

capture.

7 Welfare Costs of Economic Fluctuations

With the estimated values for θ̂2 and σ̂2
ε , we can now turn back to the calculation of our

decomposition for λT, λB, and λR shown in Theorem 1. We show all our results in Table

3. The numbers are obtained by plugging in the estimates in Table 1 into equations (10)

through (20) and shown for all the implied θ̂2 from our grid for θ1 and for four differ-

ent values of the degree of relative risk aversion, γ. For the permanent and ARIMA-BN

shocks, the values reported consider β = 0.96.18 We also provide a measure that is more

naturally comparable to the ones shown in the literature that computes costs with the ab-

sence of the span θ, which is represented by λlit placed in the last column of the table. The

derivation of this equivalent cost is straightforward and hence we leave it to Appendix

B.4.
18In Appendix E.1, we report the results for β ∈ {0.95, 0.96, 0.97}.
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Table 3: Decomposition of the welfare cost of total economic fluctuations.

Transitory shocks

λT λB λR λlit

θ̂2 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 -

γ = 1 0.32 0.40 0.51 0.66 0.12 0.17 0.25 0.37 0.20 0.23 0.25 0.29 0.13
γ = 2.5 0.81 1.00 1.27 1.66 0.42 0.58 0.82 1.17 0.39 0.42 0.44 0.48 0.32
γ = 5 1.63 2.01 2.55 3.35 0.91 1.27 1.78 2.53 0.71 0.74 0.76 0.80 0.64
γ = 7.5 2.45 3.04 3.86 5.07 1.40 1.96 2.74 3.90 1.03 1.06 1.08 1.12 0.96

Permanent shocks

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.63 3.92 4.99 6.65 1.64 3.02 4.11 5.74 0.97 0.88 0.84 0.86 0.36
γ = 2.5 3.25 4.89 6.33 8.91 2.15 3.92 5.40 7.97 1.08 0.94 0.88 0.88 0.52
γ = 5 4.14 6.28 8.34 13.01 2.89 5.21 7.34 11.99 1.21 1.02 0.93 0.90 0.63
γ = 7.5 5.44 8.39 11.60 15.47 4.00 7.19 10.52 14.39 1.39 1.12 0.98 0.95 0.69

ARIMA-BN

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 5.15 6.40 8.16 10.79 3.13 4.13 5.58 7.77 1.96 2.18 2.45 2.81 0.75
γ = 2.5 6.75 8.49 11.06 15.08 5.13 6.73 9.11 12.86 1.54 1.65 1.79 1.96 0.94
γ = 5 8.16 10.63 14.65 22.16 6.71 9.09 12.96 20.26 1.36 1.41 1.49 1.58 1.03
γ = 7.5 9.64 13.37 20.92 51.68 8.25 11.88 19.28 49.52 1.29 1.33 1.38 1.44 1.06

Notes: The table displays the computed parameters for the decomposition of the welfare cost of
total economic fluctuations. The numbers are obtained using equations (10) through (20) with
the estimates shown in Table 1. All of the entries are in percentages of lifetime consumption. We
also report an extra welfare cost measure, λlit, described in Appendix B.4. We report numbers
for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with a calibrated β = 0.96 for the permanent shocks and ARIMA-BN
process.

We focus on the usual level of relative risk aversion used in the literature, γ = 2.5. For

transitory shocks with a span of θ̂2 = 0.50, the total cost, λT, is 1.27 percent of lifetime

consumption, being divided into 0.82 stemming from the benefit of current stabilization

policies and 0.44 of residual cost. In this case, we recover modest numbers for the costs,

though 1.27 percent of lifetime consumption is already at the higher levels estimated in

the literature. Nonetheless, the comparison with λlit implies a small difference of 12 per-

centage points with λR, showing the limitations imposed by the original shock structure.
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With permanent shocks we obtain an overall increase of all λ’s with a substantially

high λT = 6.33, with more than 85 percent of this stemming from λB, hence already

being stabilized. We end up with 0.88 percent of consumption still left to be smoothed by

policies. If we compare this result to the equivalent calculation obtained in the literature,

λlit, we can see that, for our permanent shocks specification, our residual cost is almost

70 percent larger than what a measure with the absence of θ would imply.

Finally, we can focus on our preferred specification of the shocks, the ARIMA-BN

process structure, which is the one that better fits the time-series characteristics of the

log-consumption data. Results shown in the bottom third of Table 3 point to tge high

welfare costs of total economic fluctuations. The total cost, λT, is 11 percent of lifetime

consumption with λB = 9.11, or 82 percent of it represented as the benefit of ongoing

policies. This leaves us with a residual of λR = 1.79 yet to be smoothed, almost double

the value of λlit.

More importantly, beyond finding high levels of costs for λT, the approach is able to

unveil how much of the total welfare costs are left unaccounted for if one focuses only

on the residual measures. Fixing γ = 2.5, even if we assume a zero effect of stabilization

policies in the pre-1947 period, there would still be 5.13 percent of lifetime consumption

accruing to the benefit of ongoing policies. Had we assumed a θ1 = 0.3, the highest value

in our grid, we would then jump to almost 13 percent of lifetime consumption smoothed

by the stabilization policies that are already set in place. If we return to θ̂2 = 0.69 and let

γ = 5, we have that the total cost is 14.65 percent of lifetime consumption, out of which

88 percent is already being stabilized.

Overall, the numbers we find for the total costs at our preferred specification lie at a

higher value than the figures often estimated in the literature, especially when consid-

ering the cases with standard CRRA preferences. Apart from the comparison with λlit

within our own framework, we can also simply benchmark the values against some of

the numbers estimated with other methodologies. Barlevy (2005) provides an excellent

summary of the early literature in which figures value from 0.01 to 8.0 percent, even when

remarkably different modeling strategies and assumptions are considered. One of the ex-
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ceptions is Dolmas (1998), who finds values for the costs above 20 percent when using

fist-order risk aversion, permanent shocks, and small elasticities of substitution. Closer

to our approach and with a focus on the statistical properties of the consumption growth

series, Reis (2009) finds values that range from 0.5 to 5 percent, with higher numbers -

but smaller than 8 percent - when considering ARMA processes coupled with high risk-

aversion. Also, with a similar approach, Guillén et al. (2014) find at most 5 percent, even

when including the pre-WWII high-volatility years in the estimation and high risk aver-

sion in an environment blending permanent and transitory shocks.

The results also allow us to explore a simple theoretical aspect that allows us to un-

derstand how the concave utility interacts with our proposed decomposition and the pa-

rameter θ. If we fix a given level of the measured span of policies, the marginal benefit

of smoothing the residual fluctuations in proportion to the total welfare cost, i.e., λR/λT,

is decreasing in the relative degree of risk aversion. Risk-averse consumers tend to value

relatively more the benefit generated by the ongoing stabilization policies, going up as

much as 92 percent of the total welfare cost with the ARIMA-BN process when γ is at the

highest level considered.

8 Robustness - Structural Break

An important potential concern is the presence of structural breaks in a long time series.

We have already identified a structural break in the volatility of our consumption series,

but it is also important to test whether we find any in the historical path of the consump-

tion data. We apply the methodology developed in Bai and Perron (1998, 2003) to test

structural breaks in our sample. For the transitory shock version we test a structural

break in the log-consumption and we find a breaks in 1879, 1931, and 1993. We also test a

structural break in the first difference of log-consumption, which is the series used in our

main analysis that accommodates permanent and persistent shocks. We obtain a scaled

F-statistic of 9.31 (with critical value of 8.58), indicating a break in 1934.19

19In our tests, we allow for at most 5 breaks in the time series. The tests indicate only one break in the first
difference of log-consumption (1934) and indicate 3 breaks in the log-consumption (1879, 1931, and 1993).
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We use these breaks to create a new division of the sub-samples that are used in our

identification strategy. Since the level and the first difference both indicate a break in

the 1930s, this is then the most relevant period for adjustment of the data. The first sub-

sample we define considers the years from the beginning of the sample until the years of

the structural breaks, and a second sub-sample, as in the main text, considers the years

after WWII. To keep the sub-samples the same size for our estimations with all types of

shocks, we set the first sub-sample for the years between 1835 and 1930.

The results of the estimated parameters along with the implied θ̂2 are presented in

Table 4. If we compare those results with the results in Table 1 in our main exercise, we

note that the estimations imply only a marginal change in the implied parameters with

all three shock structures. In Appendix E.2, Tables 7 and 8 present the welfare cost calcu-

lations for our λ’s using the implied parameters in Table 4. For our preferred parameters,

we find a difference of only 1 percentage point for the estimate of θ̂2 and the computed

λT, both with a lower value.

For 1931 the scaled F-statistic is 1221.88 with a critical value of 11.47.
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9 Conclusion

In this paper we revisited the long-standing issue of the welfare costs of business cycles

with a focus on unveiling the extent to which ongoing stabilization policies are smooth-

ing observed consumption. We rooted our approach in the novel modelling that all data

we gather on consumption are subject to the policy status quo and we provided a decom-

position for macroeconomic fluctuations. We recovered the total welfare costs of business

cycles by disentangling them into the benefit of current policies and the residual yet to be

flattened.

We also conducted an empirical analysis with the goal of identifying our key decom-

position parameter, the span of stabilization power, from the historical consumption data.

In doing so, we profited from the observation that there is a discontinuous decrease in the

series’ volatility after WWII, a fact widely documented by a vast literature in macroeco-

nomics. With the proper strategy, we were able to recover estimates from the data and

found that the span of stabilization power, in our preferred shock structure and param-

eter space, is approximately 69 percent and the welfare costs of total economic fluctua-

tions are around 11 percent of permanent consumption, with 9 percent of it already being

smoothed by ongoing policies and 1.8 percent left as a residual.

Our paper abstracts from some key aspects that are relevant to our question, such as

different types of consumption goods, heterogeneity, and distributional aspects that shed

a stronger light on consumption and risk inequality. We also take a simplified view of the

role of stabilization policies and technological changes in the post-war US economy. We

attempted to tackle part of the latter issue by constructing a time-varying span of stabi-

lization power that yields estimates similar to those in our original analysis. However, we

understand that they are all critical considerations that are worth a detailed exploration

that could potentially expand our analysis. But for the moment, we leave them for future

research.
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Appendix

A Proofs

Below we outline the proofs for Lemmas 1, 2, 3, Propositions 1, 2, 3 and for Theorem 1.

Lemma 1. Under Assumption 1 and CRRA utility (5),

∞

∑
t=0

βtu (C̄t) =


ln α0
1−β + β ln(1+α1)

(1−β)2 , if γ = 1

α̃0 ∑∞
t=0 Γt, if γ > 1

(34)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 1. Consider a γ = 1. Then,

∞

∑
t=0

βt ln (C̄t) =
∞

∑
t=0

βt (ln α0 + t ln (1 + α1)) =
ln α0

1− β
+

β ln (1 + α1)

(1− β)2 . (35)

When γ > 1,

∞

∑
t=0

βt(1− γ)−1 (C̄t)
1−γ

= (1− γ)−1α
1−γ
0

∞

∑
t=0

[
β (1 + α1)

1−γ
]t

= α̃0

∞

∑
t=0

Γt. (36)

�

Lemma 2. Consider an arbitrary constant k > 0. Under Assumption 1 and CRRA utility (5),

E0

[
∞

∑
t=0

βtu
(
(1 + k)C̃t

)]
=


ln(1+k)

1−β + ln α0
1−β + β ln(1+α1)

(1−β)2 − 1
2 ∑∞

t=0 βtσ2
t , if γ = 1

α̃0(1 + k)1−γ ∑∞
t=0 Γt exp

{
−0.5γ (1− γ) σ2

t
}

, if γ > 1
(37)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 2. For the case where γ = 1,
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E0

[
∞

∑
t=0

βt ln
[
(1 + k)C̃t

]]
= E0

[
∞

∑
t=0

βt
(

ln(1 + k) + ln α0 + t ln (1 + α1) + xt −
1
2

σ2
t

)]

=
∞

∑
t=0

βt
(

ln(1 + k) + ln α0 + t ln (1 + α1) + E0 [xt]−
1
2

σ2
t

)
=

ln(1 + k)
1− β

+
ln α0

1− β
+

β ln (1 + α1)

(1− β)2 − 1
2

∞

∑
t=0

βtσ2
t ,

using the fact that E0 [xt] = 0.

For the case where γ > 1,

E0

[
∞

∑
t=0

βt
[
(1 + k)C̃t

]1−γ

1− γ

]
= (1− γ)−1E0

[
∞

∑
t=0

βt
[
(1 + k)α0 (1 + α1)

t exp
{

xt − 0.5σ2
t

}]1−γ
]

= α̃0(1 + k)1−γ
∞

∑
t=0

[
β (1 + α1)

1−γ
]t
× . . .

. . . exp
{
−0.5 (1− γ) σ2

t

}
E0 [exp {(1− γ) xt}] .

Note that

E0 [exp {(1− γ) xt}] = exp {E0 [(1− γ) xt] + 0.5Var0 [(1− γ) xt]} = exp
{

0.5 (1− γ)2 σ2
t

}
.

Thus,

E0

[
∞

∑
t=0

βt
[
(1 + k)C̃t

]1−γ

1− γ

]
= α̃0(1 + k)1−γ

∞

∑
t=0

Γt exp
{
−0.5 (1− γ) σ2

t

}
exp

{
0.5 (1− γ)2 σ2

t

}
= α̃0(1 + k)1−γ

∞

∑
t=0

Γt exp
{
−0.5γ (1− γ) σ2

t

}
.

�

Lemma 3. Consider an arbitrary constant ` > 0. Under Assumption 1 and CRRA utility (5),

∞

∑
t=0

βtu ((1 + `)Ct(θ)) =
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ln(1+`)

1−β + ln α0
1−β + β ln(1+α1)

(1−β)2 − 1
2 (1− θ)∑∞

t=0 βtσ2
t , if γ = 1

α̃0(1 + `)1−γ ∑∞
t=0 Γt exp

{
−0.5 (1− γ) (1− θ) (θ + γ− γθ) σ2

t
}

, if γ > 1
(38)

where α̃0 ≡ (1− γ)−1α
1−γ
0 .

Proof of Lemma 3. Again, when γ = 1,

E0

[
∞

∑
t=0

βt ln [(1 + `)Ct(θ)]

]
= E0

[
∞

∑
t=0

βt ln
[
(1 + `)α0 (1 + α1)

t exp
{
(1− θ)

[
xt − 0.5σ2

t

]}]]

=
∞

∑
t=0

βt
(

ln(1 + `) + ln α0 + t ln (1 + α1) + (1− θ)
[

E0 [xt]− 0.5σ2
t

])
=

ln(1 + `)

1− β
+

ln α0

1− β
+

β ln (1 + α1)

(1− β)2 − 1− θ

2

∞

∑
t=0

βtσ2
t ,

given that E0 [xt] = 0. With γ > 1,

E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

1− γ

]
= (1− γ)−1E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

]

= (1− γ)−1E0

[
∞

∑
t=0

βt
[
(1 + `)α0 (1 + α1)

t + . . .

. . . exp
{
(1− θ)

[
xt − 0.5σ2

t

]}]1−γ
]

= α̃0(1 + `)1−γ
∞

∑
t=0

[
β (1 + α1)

1−γ
]t
× . . .

. . . exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
E0 [exp {(1− θ) (1− γ) xt}] .

Note that

E0 [exp {(1− θ) (1− γ) xt}] = exp {E0 [(1− θ) (1− γ) xt] + 0.5Var0 [(1− θ) (1− γ) xt]}
= exp

{
0.5 (1− θ)2 (1− γ)2 σ2

t

}
.
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And,

exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
E0 [exp {(1− θ) (1− γ) xt}]

= exp
{
−0.5 (1− θ) (1− γ) σ2

t

}
exp

{
0.5 (1− θ)2 (1− γ)2 σ2

t

}
= exp

{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t

}
.

Thus,

E0

[
∞

∑
t=0

βt [(1 + `)Ct (θ)]
1−γ

1− γ

]
= α̃0(1+ `)1−γ

∞

∑
t=0

Γt exp
{
−0.5 (1− θ) (1− γ) (γ + θ − γθ) σ2

t

}

�

Proof of Proposition 1. Replace k with λB in Lemma 2, use ` = 0 in Lemma 3, and then
solve equation (3) for λB. The assumptions guarantee that λB < ∞. �

Proof of Proposition 2. We use ` = λR in Lemma 3 and the results in Lemma 1 for solving
equation (4) for λR. The assumptions guarantee that λR < ∞. �

Proof of Proposition 3. We use k = λT in Lemma 2 and Lemma 1 in equation (1). Then, we
solve it for λT. The assumptions guarantee that λT < ∞. �

Proof of Theorem 1. For γ = 1, we have

(
1 + λB

) (
1 + λR

)
= exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
exp

{
(1− θ)

1− β

2

∞

∑
t=0

βtσ2
t

}

= exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
= 1 + λT

Now, for γ > 1, we have
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(
1 + λB

)1−γ (
1 + λR

)1−γ
=

∑∞
t=0 Γte−0.5(1−γ)(1−θ)(θ+γ−γθ)σ2

t

∑∞
t=0 Γte−0.5γ(1−γ)σ2

t

∑∞
t=0 Γt

∑∞
t=0 Γte−0.5(1−θ)(1−γ)(γ+θ−γθ)σ2

t

⇐⇒
(

1 + λB
) (

1 + λR
)

=

[
∑∞

t=0 Γt

∑∞
t=0 Γte−0.5γ(1−γ)σ2

t

] 1
1−γ

= 1 + λT

�

B Calculations for the Applications

B.1 Example 1 (Lucas, 1987):

For γ = 1:

λT = exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
1
2

σ2
ε

}
− 1 (39)

λB = exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
θ

1− β

2
σ2

ε
1

1− β

}
− 1 = exp

{
θ

2
σ2

ε

}
− 1 (40)

λR = exp
{
(1− θ)

1− β

2
σ2

ε
1

1− β

}
− 1 = exp

{
1− θ

2
σ2

ε

}
− 1 (41)

For γ > 1:

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp
{

0.5γ (γ− 1) σ2
t
}


1
1−γ

− 1

=

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
1

exp {0.5γ (γ− 1) σ2
ε }

] 1
1−γ

− 1 = exp
{

1
2

γσ2
ε

}
− 1 (42)
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λB =

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2}∑∞

t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
exp

{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
exp {−0.5γ (1− γ) σ2

ε }

] 1
1−γ

− 1

= exp
{

1
2
[γ− (1− θ) (γ + θ − θγ)] σ2

ε

}
(43)

λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ
]t


1

1−γ

− 1

=

[
1

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

− 1

= exp
{

1
2
(1− θ) (γ + θ − θγ) σ2

ε

}
(44)

B.2 Example 2 (Obstfeld, 1994)

For γ = 1:

λT = exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp

{
1− β

2

[
β

(1− β)2 +
1

1− β

]
σ2

ε

}
− 1 = exp

{
1
2

1
1− β

σ2
ε

}
− 1 (45)

λB = exp

{
θ

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
θ

1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp
{

θ

2

[
β + 1− β

1− β

]
σ2

ε

}
− 1 = exp

{
θ

2
1

1− β
σ2

ε

}
− 1 (46)
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λR = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βt
(

tσ2
ε + σ2

ε

)}
− 1

= exp
{

1− θ

2

[
β + 1− β

1− β

]
σ2

ε

}
− 1 = exp

{
1− θ

2
1

1− β
σ2

ε

}
− 1 (47)

For γ > 1:

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) σ2
ε }∑∞

t=0

[
β (1 + α1)

1−γ exp {0.5γ (γ− 1) σ2
ε }
]t


1

1−γ

− 1

=

[
1

1− β (1 + α1)
1−γ

1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
exp {0.5γ (γ− 1) σ2

ε }

] 1
1−γ

− 1

= exp
{

0.5γσ2
ε

} [1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
1− β (1 + α1)

1−γ

] 1
1−γ

− 1 (48)

λB =

=

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ]

(
tσ2

ε + σ2
ε

)}
∑∞

t=0

[
β (1 + α1)

1−γ
]t

exp {0.5γ (γ− 1) (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

exp
{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
exp {−0.5γ (1− γ) σ2

ε }

1
1−β(1+α1)

1−γ exp{−0.5(1−θ)(1−γ)[γ+θ−θγ]σ2
ε }

1
1−β(1+α1)

1−γ exp{0.5γ(γ−1)σ2
ε }


1

1−γ

− 1

=
exp

{
0.5γσ2}

exp {0.5 (1− θ) [γ + θ − θγ] σ2}

×
[

1− β (1 + α1)
1−γ exp

{
0.5γ (γ− 1) σ2

ε

}
1− β (1 + α1)

1−γ exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

− 1 (49)
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λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] (tσ2
ε + σ2

ε )}


1

1−γ

− 1

=

[
1

exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2
ε }
]t


1

1−γ

− 1

=
1

exp {−0.5 (1− θ) [γ + θ − θγ] σ2
ε }

×
[

1− β (1 + α1)
1−γ exp

{
−0.5 (1− θ) (1− γ) [γ + θ − θγ] σ2

ε

}
1− β (1 + α1)

1−γ

] 1
1−γ

− 1 (50)

B.3 Example 3 - ARIMA-BN Process (Reis, 2009):

From the Beveridge-Nelson decomposition,

xBN
t = ψ (1)

t

∑
j=0

ε j +
t

∑
j=0

ϕjεt−j

= [ψ (1) + ϕt] ε0 + [ψ (1) + ϕt−1] ε1 + · · ·+ [ψ (1) + ϕ1] εt−1 + [ψ (1) + ϕ0] εt

=
t

∑
j=0

[
ψ (1) + ϕt−j

]
ε j (51)

Since ε0 is revealed at the end of t = 0, E0
[
xBN

t
]
= 0. Hence,

σ2
xBN

t
≡ E

[(
xBN

t −E0

[
xBN

t

])2
]
= E

[
(xBN

t )2
]
= E

[
t

∑
j=0

[
ψ (1) + ϕt−j

]2
ε2

j

]

=
t

∑
j=0

[
ψ (1)2 + 2ψ (1) ϕt−j + ϕ2

t−j

]
σ2

ε

= (t + 1)ψ (1)2 σ2
ε + 2ψ (1)

t

∑
j=0

ϕt−jσ
2
ε +

t

∑
j=0

ϕ2
t−jσ

2
ε (52)
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which can be rewritten into (17).

Hence, for γ = 1,

λT = exp

{
1− β

2

∞

∑
t=0

βtσ2
t

}
− 1 = exp

{
1− β

2

∞

∑
t=0

βt (ρ0 + ρ1t)

}
− 1

= exp
{

1
2

(
ρ0 +

β

1− β
ρ1

)}
− 1 (53)

λB = exp

{
θ

1− β

2

∞

∑
t=0

βt (ρ0 + ρ1t)

}
− 1 = exp

{
θ

2

(
ρ0 +

β

1− β
ρ1

)}
− 1 (54)

λR = exp

{
(1− θ)

1− β

2

∞

∑
t=0

βt (ρ0 + ρ1t)

}
− 1 = exp

{
1− θ

2

(
ρ0 +

β

1− β
ρ1

)}
− 1 (55)

For γ > 1,

λT =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5γ (1− γ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
1

exp {−0.5γ (1− γ) ρ0}

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5γ (1− γ) ρ1}
]t


1

1−γ

= exp {0.5γρ0}
[

1− β (1 + α1)
1−γ exp {−0.5γ (1− γ) ρ1}

1− β (1 + α1)
1−γ

] 1
1−γ

(56)
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λB =

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) (ρ0 + ρ1t)}

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5γ (1− γ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ0}

exp {−0.5γ (1− γ) ρ0}

] 1
1−γ

×

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5γ (1− γ) ρ1}
]t


1

1−γ

− 1

=
exp {0.5γρ0}

exp {0.5 (1− θ) (θ + γ− γθ) ρ0}

×
[

1− β (1 + α1)
1−γ exp {−0.5γ (1− γ) ρ1}

1− β (1 + α1)
1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}

] 1
1−γ

− 1 (57)

λR =

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ
]t

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) (ρ0 + ρ1t)}


1

1−γ

− 1

=

[
1

exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ0}

] 1
1−γ

×

 ∑∞
t=0

[
β (1 + α1)

1−γ
]t

∑∞
t=0

[
β (1 + α1)

1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}
]t


1

1−γ

− 1

= exp {0.5 (1− θ) (θ + γ− γθ) ρ0}

×
[

1− β (1 + α1)
1−γ exp {−0.5 (1− γ) (1− θ) (θ + γ− γθ) ρ1}

1− β (1 + α1)
1−γ

] 1
1−γ

− 1

B.4 The Literature-based Cost λlit

Here we characterize in our three applications the welfare cost of business cycles in the

absence of observed consumption as proposed in our decomposition. We simply substi-

tute σ2
ε by σ2

u in our previous calculations and use the formula for λT for each type of
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shock. Recall that, in our methodology, σ2
u = (1− θ2)

2σ2
ε .

Example 1 (Lucas, 1987) :

λlit =


exp

(
σ2

u
2

)
− 1, if γ = 1

exp
(

γσ2
u

2

)
− 1, if γ > 1

(58)

Example 2 (Obstfeld, 1994) :

λlit =


exp

(
σ2

u
2(1− β)

)
− 1, if γ = 1

exp
{

0.5γσ2
u
} [1− Γ exp−0.5γ(1− γ)σ2

u
1− Γ

] 1
1−γ

− 1, if γ > 1
(59)

Example 3 - ARIMA-BN Process (Reis, 2009):

In this case, the substitution is in equation (17).

λlit =


exp

{
1
2

(
ρ0 +

β

1− β
ρ1

)}
− 1, if γ = 1

exp {0.5γρ0}
[

1− Γ exp {−0.5γ (1− γ) ρ1}
1− Γ

] 1
1− γ , if γ > 1

(60)
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C Identification in Transitory Shocks

Figure 3: Estimated residuals of transitory shocks between 1835 and 2019.
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Year

-0.4
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0.4

 1947

estimated shocks

band limit

Notes: The figure shows the time series for per capita consumption for the US between 1835 and 2019 with
our augmented sample of the Barro and Ursúa (2010) data. The vertical line marks the year 1947, at the
end of WWII. We report the standard errors for the two sub-periods generated by this line along with the
average and band limits equivalent to 2σu.
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D Extra Figure for the Time-Varying θ

Figure 4: Estimated
√

eh50
t for the stochastic volatility model.

1950 1960 1970 1980 1990 2000 2010

year

0.008
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0.012

0.014

0.016

0.018

0.02

0.022

0.024

Notes: The figure shows the estimated time series for
√

eh50
t . The solid black line shows the values associ-

ated with the median quantile of the estimation, while the dashed lines indicating the bands of the credible
interval are associated with quantiles 16 and 84. The solid red line shows the σ̂u obtained in the estimation
shown in Table 1. These values were obtained from the estimation of the stochastic volatility process for
the first difference of log-consumption described in equations (31) and (32). The series spans from 1947
through 2019 and is computed considering θ1 = 0.2 and σ̂u,1 = 0.0021.

E Estimates of Welfare Costs for Different β’s

E.1 Full Sample

In Tables 5 and 6 we present our estimations of the welfare cost using the full sample as

in the main text. For the case of permanent and ARIMA-BN shocks, we compute the λ’s

for different values of β.
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Table 5: Welfare cost - Full sample

Transitory shocks

λT λB λR λlit

θ̂2 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 0.37 0.44 0.50 0.56 -

γ = 1 0.32 0.40 0.51 0.66 0.12 0.17 0.25 0.37 0.20 0.23 0.25 0.29 0.13
γ = 2.5 0.81 1.00 1.27 1.66 0.42 0.58 0.82 1.17 0.39 0.42 0.44 0.48 0.32
γ = 5 1.63 2.01 2.55 3.35 0.91 1.27 1.78 2.53 0.71 0.74 0.76 0.80 0.64
γ = 7.5 2.45 3.04 3.86 5.07 1.40 1.96 2.74 3.90 1.03 1.06 1.08 1.12 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.10 2.60 3.30 4.33 1.31 1.72 2.31 3.18 0.77 0.86 0.97 1.11 0.29
γ = 2.5 3.42 4.26 5.46 7.27 2.63 3.41 4.53 6.23 0.77 0.82 0.89 0.98 0.46
γ = 5 4.58 5.79 7.60 10.51 3.77 4.94 6.69 9.51 0.78 0.81 0.86 0.91 0.58
γ = 7.5 5.44 7.03 9.56 14.12 4.61 6.16 8.63 13.11 0.80 0.82 0.86 0.90 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 2.63 3.92 4.99 6.65 1.64 3.02 4.11 5.74 0.97 0.88 0.84 0.86 0.36
γ = 2.5 3.25 4.89 6.33 8.91 2.15 3.92 5.40 7.97 1.08 0.94 0.88 0.88 0.52
γ = 5 4.14 6.28 8.34 13.01 2.89 5.21 7.34 11.99 1.21 1.02 0.93 0.90 0.63
γ = 7.5 5.44 8.39 11.60 15.47 4.00 7.19 10.52 14.39 1.39 1.12 0.98 0.95 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 0.63 0.67 0.70 0.74 -

γ = 1 3.52 4.36 5.55 7.31 2.20 2.88 3.87 5.36 1.29 1.44 1.62 1.85 0.48
γ = 2.5 4.60 5.74 7.40 9.92 3.54 4.60 6.14 8.51 1.02 1.09 1.18 1.30 0.61
γ = 5 5.48 6.97 9.23 12.96 4.52 5.96 8.14 11.76 0.92 0.96 1.01 1.07 0.69
γ = 7.5 6.23 8.13 11.21 17.13 5.29 7.14 10.16 15.97 0.89 0.92 0.96 1.00 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations expanding the one in the main text for different β’s. The numbers are obtained using
equations (10) through (15) with the estimates shown in Table 1. All of the entries are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid
for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 6: Welfare cost - Full sample - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 4.07 5.05 6.43 8.48 2.48 3.27 4.40 6.12 1.55 1.72 1.94 2.22 0.60
γ = 2.5 5.91 7.42 9.63 13.05 4.49 5.88 7.92 11.13 1.36 1.46 1.58 1.73 0.83
γ = 5 7.50 9.72 13.29 19.77 6.16 8.30 11.74 18.03 1.26 1.32 1.38 1.47 0.96
γ = 7.5 8.99 12.35 18.89 40.20 7.68 10.95 17.35 38.31 1.22 1.26 1.31 1.37 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 5.15 6.40 8.16 10.79 3.13 4.13 5.58 7.77 1.96 2.18 2.45 2.81 0.75
γ = 2.5 6.75 8.49 11.06 15.08 5.13 6.73 9.11 12.86 1.54 1.65 1.79 1.96 0.94
γ = 5 8.16 10.63 14.65 22.16 6.71 9.09 12.96 20.26 1.36 1.41 1.49 1.58 1.03
γ = 7.5 9.64 13.37 20.92 51.68 8.25 11.88 19.28 49.52 1.29 1.33 1.38 1.44 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 6.98 8.69 11.12 14.76 4.23 5.59 7.56 10.57 2.64 2.93 3.31 3.79 1.01
γ = 2.5 7.84 9.91 12.95 17.80 5.96 7.86 10.68 15.19 1.78 1.90 2.06 2.26 1.08
γ = 5 8.93 11.71 16.29 25.19 7.36 10.03 14.46 23.09 1.46 1.53 1.61 1.71 1.11
γ = 7.5 10.38 14.56 23.47 85.20 8.90 12.97 21.70 82.42 1.36 1.40 1.45 1.52 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations expanding the one in the main text for different β’s. The numbers are obtained using equations (18)
through (20) with the estimates shown in Table 1. All of the entries are in percentages of lifetime consumption.
We also report an extra welfare cost measure, λlit, described in Appendix B.4. We report numbers for the
relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and
with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.

E.2 Structural Break

In Tables 7 and 8 we present our estimations of the welfare cost using the sample adjusted

for structural breaks as described in the main text. For the case of permanent and ARIMA-

BN shocks, we compute the λ’s for different values of β.
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Table 7: Structural break - Welfare cost

Transitory shocks

λT λB λR λlit

θ̂2 0.32 0.39 0.46 0.53 0.32 0.39 0.46 0.53 0.32 0.39 0.46 0.53 -

γ = 1 0.28 0.34 0.43 0.56 0.09 0.13 0.20 0.30 0.19 0.21 0.23 0.27 0.13
γ = 2.5 0.69 0.85 1.08 1.42 0.31 0.45 0.65 0.95 0.38 0.40 0.43 0.46 0.32
γ = 5 1.39 1.72 2.18 2.85 0.69 0.99 1.42 2.06 0.70 0.72 0.74 0.78 0.64
γ = 7.5 2.09 2.58 3.28 4.31 1.06 1.53 2.20 3.18 1.02 1.04 1.06 1.10 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 1.96 2.43 3.08 4.04 1.20 1.58 2.12 2.94 0.75 0.83 0.94 1.07 0.29
γ = 2.5 3.19 3.97 5.09 6.76 2.42 3.14 4.18 5.75 0.75 0.80 0.87 0.96 0.46
γ = 5 4.25 5.37 7.03 9.67 3.46 4.53 6.13 8.69 0.77 0.80 0.84 0.90 0.58
γ = 7.5 4.91 6.32 8.51 12.36 4.09 5.46 7.61 11.38 0.79 0.81 0.84 0.88 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 2.46 3.66 4.63 6.09 1.51 2.78 3.77 5.20 0.94 0.86 0.83 0.85 0.36
γ = 2.5 3.04 4.56 5.86 8.09 1.98 3.61 4.95 7.16 1.04 0.92 0.87 0.87 0.52
γ = 5 3.86 5.85 7.70 11.59 2.66 4.81 6.73 10.60 1.17 0.99 0.91 0.90 0.63
γ = 7.5 4.98 7.63 10.40 13.46 3.60 6.48 9.34 12.41 1.33 1.08 0.96 0.93 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 0.62 0.65 0.69 0.73 -

γ = 1 3.29 4.08 5.19 6.83 2.01 2.65 3.56 4.95 1.25 1.39 1.57 1.79 0.48
γ = 2.5 4.29 5.35 6.88 9.21 3.25 4.24 5.66 7.84 1.00 1.07 1.16 1.27 0.61
γ = 5 5.08 6.45 8.51 11.87 4.14 5.46 7.45 10.71 0.90 0.94 0.99 1.05 0.69
γ = 7.5 5.61 7.27 9.92 14.79 4.69 6.30 8.90 13.67 0.88 0.91 0.94 0.99 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that avoids the structural break in 1931. The numbers are
obtained using equations (10) through (15) with the estimates shown in Table 4. All of the entries are in
percentages of lifetime consumption. We also report an extra welfare cost measure, λlit, described in Ap-
pendix B.4. We report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied
θ̂2 along the grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 8: Structural break - Welfare cost - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 3.80 4.71 6.00 7.91 2.27 3.00 4.05 5.64 1.50 1.67 1.88 2.15 0.60
γ = 2.5 5.50 6.90 8.94 12.08 4.12 5.40 7.28 10.21 1.33 1.43 1.54 1.69 0.83
γ = 5 6.92 8.94 12.13 17.79 5.60 7.54 10.62 16.11 1.25 1.30 1.36 1.45 0.96
γ = 7.5 8.19 11.12 16.56 31.28 6.90 9.75 15.07 29.52 1.21 1.25 1.30 1.35 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 4.81 5.97 7.62 10.06 2.86 3.79 5.13 7.16 1.89 2.10 2.37 2.71 0.75
γ = 2.5 6.28 7.89 10.25 13.93 4.70 6.18 8.36 11.79 1.51 1.62 1.75 1.92 0.94
γ = 5 7.52 9.76 13.33 19.83 6.10 8.25 11.69 18.00 1.34 1.40 1.47 1.56 1.03
γ = 7.5 8.76 11.99 18.17 37.05 7.39 10.53 16.58 35.12 1.28 1.31 1.36 1.43 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 6.51 8.10 10.36 13.75 3.87 5.12 6.95 9.73 2.55 2.84 3.20 3.66 1.01
γ = 2.5 7.29 9.19 11.99 16.41 5.46 7.20 9.78 13.90 1.74 1.86 2.01 2.21 1.08
γ = 5 8.22 10.73 14.78 22.39 6.68 9.08 12.99 20.37 1.44 1.51 1.58 1.68 1.11
γ = 7.5 9.41 13.00 20.15 46.47 7.96 11.45 18.44 44.30 1.35 1.39 1.44 1.50 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations using a robustness sample that avoids the structural break in 1931. The numbers are obtained
using equations (18) through (20) with the estimates shown in Table 4. All of the entries are in percentages
of lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.

F Extra Robustness Exercises

F.1 Removing the Interwar Period

As the previous exercise used the disjoint periods (1835-1930 and 1947-2019), we run an

additional experiment where we use the 1931 break in the time series as a reference point

to design two new intervals. In the previous exercise, we have removed 15 periods -

years 1931 to 1945 - from the full sample. Those periods were exclusively defined after

the break. For this case, we remove a similar interval for the period before the 1931 break.

We construct two sub-samples by excluding the interwar period from our data, which

results in a first period with years 1835 to 1913 and a second period from 1947 to 2019, the
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last one as in our main analysis.20

Besides the structural break in the consumption series during the interwar period,

many other relevant macroeconomic events happened during this window of time. For

example, we have the 1929 crisis and the Great Depression that followed. In general, this

period was marked by highly unstable macroeconomic outcomes, and hence, it is worth

subtracting it from the sample to better measure pre-war volatility. Once again, the results

are similar to those of our original analysis. Table 9 presents the estimated and implied

parameters and Tables 10 and 11 present the computed λ’s using the estimations in Table

9. Similarly to the robustness check with structural breaks, there is no substantial change

in the results, with our preferred total cost being roughly 1 percentage point smaller than

the one shown in our main exercise.

20We also run an experiment by removing exactly 15 periods before and after the break, that is, using
sub-samples from 1835-1915 and 1947-2019. As expected, the results are so similar to the results in this
subsection that we only report the exercise where we remove the interwar period.
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Table 10: Removing the interwar period - Welfare cost

Transitory shocks

λT λB λR λlit

θ̂2 0.33 0.40 0.46 0.53 0.33 0.40 0.46 0.53 0.33 0.40 0.46 0.53 -

γ = 1 0.28 0.35 0.44 0.58 0.09 0.14 0.21 0.31 0.19 0.21 0.24 0.27 0.13
γ = 2.5 0.71 0.88 1.11 1.46 0.33 0.47 0.68 0.99 0.38 0.40 0.43 0.46 0.32
γ = 5 1.43 1.76 2.24 2.93 0.72 1.04 1.48 2.14 0.70 0.72 0.75 0.78 0.64
γ = 7.5 2.15 2.66 3.38 4.43 1.12 1.60 2.29 3.30 1.02 1.04 1.07 1.10 0.96

Permanent shocks

β = 0.95

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 1.92 2.38 3.02 3.96 1.17 1.54 2.07 2.87 0.74 0.82 0.93 1.06 0.29
γ = 2.5 3.13 3.89 4.98 6.62 2.36 3.07 4.08 5.62 0.75 0.80 0.86 0.95 0.46
γ = 5 4.16 5.25 6.87 9.44 3.37 4.42 5.98 8.47 0.77 0.80 0.84 0.89 0.58
γ = 7.5 4.91 6.32 8.51 12.36 4.09 5.46 7.61 11.38 0.79 0.81 0.84 0.88 0.65

β = 0.96

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 2.41 3.58 4.53 5.94 1.47 2.71 3.67 5.05 0.93 0.85 0.83 0.85 0.36
γ = 2.5 2.98 4.47 5.73 7.87 1.93 3.52 4.83 6.94 1.03 0.91 0.86 0.87 0.52
γ = 5 3.79 5.73 7.52 11.22 2.60 4.69 6.55 10.24 1.16 0.99 0.91 0.89 0.63
γ = 7.5 4.98 7.63 10.40 13.46 3.60 6.48 9.34 12.41 1.33 1.08 0.96 0.93 0.69

β = 0.97

λT λB λR λlit

θ̂2 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 0.61 0.65 0.69 0.73 -

γ = 1 3.22 3.99 5.08 6.69 1.96 2.58 3.48 4.83 1.24 1.38 1.55 1.77 0.48
γ = 2.5 4.20 5.24 6.74 9.01 3.17 4.13 5.52 7.65 0.99 1.06 1.15 1.26 0.61
γ = 5 4.97 6.31 8.31 11.58 4.04 5.32 7.25 10.42 0.90 0.94 0.99 1.05 0.69
γ = 7.5 5.61 7.27 9.92 14.79 4.69 6.30 8.90 13.67 0.88 0.91 0.94 0.99 0.73

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that excludes the interwar period. The numbers are obtained
using equations (10) through (15) with the estimates shown in Table 9. All measures are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We
report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid
for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.

57



Table 11: Removing the interwar period - Welfare cost - ARIMA-BN

β = 0.95

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 3.73 4.62 5.88 7.75 2.21 2.92 3.95 5.51 1.48 1.65 1.86 2.13 0.60
γ = 2.5 5.39 6.76 8.74 11.81 4.01 5.26 7.10 9.96 1.32 1.42 1.53 1.68 0.83
γ = 5 6.76 8.72 11.81 17.26 5.45 7.34 10.31 15.59 1.24 1.29 1.36 1.44 0.96
γ = 7.5 7.97 10.79 15.96 29.41 6.68 9.42 14.48 27.68 1.21 1.25 1.29 1.35 1.01

β = 0.96

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 4.71 5.85 7.46 9.86 2.79 3.69 5.00 6.98 1.87 2.08 2.35 2.69 0.75
γ = 2.5 6.15 7.72 10.03 13.61 4.58 6.02 8.15 11.49 1.50 1.61 1.74 1.90 0.94
γ = 5 7.34 9.52 12.97 19.22 5.93 8.02 11.35 17.40 1.33 1.39 1.46 1.55 1.03
γ = 7.5 8.52 11.62 17.48 34.39 7.16 10.18 15.90 32.50 1.27 1.31 1.36 1.42 1.06

β = 0.97

λT λB λR λlit

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 6.38 7.94 10.15 13.46 3.76 4.99 6.77 9.49 2.52 2.81 3.16 3.63 1.01
γ = 2.5 7.14 8.99 11.73 16.03 5.32 7.02 9.54 13.54 1.73 1.85 2.00 2.19 1.08
γ = 5 8.03 10.46 14.37 21.65 6.50 8.82 12.60 19.65 1.44 1.50 1.58 1.67 1.11
γ = 7.5 9.15 12.58 19.32 42.06 7.70 11.05 17.64 39.96 1.34 1.38 1.43 1.50 1.12

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample that excludes the interwar period. The numbers are obtained
using equations (18) through (20) with the estimates shown in Table 9. All measures are in percentages of
lifetime consumption. We also report an extra welfare cost measure, λlit, described in Appendix B.4. We re-
port numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5, 7.5}, for the implied θ̂2 along the grid for
θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the ARIMA-BN process.

F.2 Using Barro and Ursúa (2010) Sample Data

We now show our results using Barro and Ursúa (2010) data only. Table 12 shows the

regression estimates and Tables 13, 14, and 15 show the calculation of the welfare costs

for all types of shocks and for different β’s.

There are some differences with the results of the analysis in the main text that require

qualification. The first occurs in the case of transitory shocks, where we observe a lower

volatility in the post-war period when compared to the augmented sample. This leads to

a significant increase in the span of stabilization power and thus a higher welfare benefit

of ongoing policies. Since this is not our preferred structure for the shocks, we understand
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that it does not make a substantial difference for our main findings.

The second difference is that for the case of ARIMA-BN shocks, the sample is also well-

modeled by an ARIMA(0,1,1), yielding two different sets of welfare costs for these shocks,

shown in Tables 14 and 15. If we compare the results for the ARIMA(1,1,0) depicted in

Table 14, which is the one equivalent to the analysis in our main text, we observe that the

total cost of economic fluctuations is roughly 1 percentage point smaller, a difference that

is not substantial for the main message of our analysis.
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Table 13: Barro and Ursúa (2008) Data - Welfare Cost

Transitory shocks

λT λB λR λ

θ̂2 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 0.60 0.64 0.68 0.72 -

γ = 1 0.32 0.40 0.51 0.66 0.19 0.25 0.34 0.47 0.13 0.14 0.16 0.19 0.05
γ = 2.5 0.81 1.00 1.27 1.66 0.60 0.78 1.03 1.39 0.21 0.22 0.24 0.26 0.13
γ = 5 1.63 2.01 2.55 3.35 1.28 1.65 2.17 2.94 0.34 0.35 0.37 0.40 0.26
γ = 7.5 2.45 3.04 3.86 5.07 1.97 2.54 3.34 4.52 0.47 0.49 0.50 0.53 0.39

Permanent shocks

β = 0.95

λT λB λR λ

θ̂2 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 -

γ = 1 2.10 2.60 3.30 4.33 1.27 1.67 2.25 3.11 0.82 0.91 1.03 1.18 0.32
γ = 2.5 3.37 4.20 5.38 7.16 2.53 3.29 4.39 6.05 0.82 0.88 0.95 1.04 0.51
γ = 5 4.47 5.65 7.40 10.22 3.60 4.73 6.43 9.15 0.84 0.87 0.92 0.98 0.64
γ = 7.5 5.28 6.81 9.23 13.55 4.38 5.87 8.23 12.47 0.86 0.89 0.92 0.96 0.72

β = 0.96

λT λB λR λ

θ̂2 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 -

γ = 1 2.63 3.86 4.86 5.62 1.58 2.90 3.92 4.67 1.03 0.94 0.90 0.91 0.40
γ = 2.5 3.25 4.81 6.16 7.28 2.09 3.77 5.16 6.29 1.14 1.00 0.94 0.94 0.58
γ = 5 4.14 6.18 8.10 9.93 2.81 5.04 7.04 8.87 1.29 1.08 0.99 0.97 0.69
γ = 7.5 5.44 8.24 11.25 14.78 3.91 6.97 10.09 13.62 1.47 1.19 1.05 1.02 0.76

β = 0.97

λT λB λR λ

θ̂2 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 0.54 0.58 0.63 0.68 -

γ = 1 3.52 4.36 5.55 7.31 2.12 2.79 3.77 5.24 1.37 1.53 1.72 1.97 0.54
γ = 2.5 4.51 5.63 7.25 9.71 3.38 4.42 5.92 8.22 1.09 1.16 1.26 1.38 0.67
γ = 5 5.32 6.76 8.94 12.51 4.30 5.68 7.78 11.24 0.98 1.02 1.08 1.14 0.75
γ = 7.5 6.02 7.82 10.75 16.26 5.01 6.77 9.62 15.02 0.96 0.99 1.03 1.08 0.80

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total eco-
nomic fluctuations using a robustness sample with only the original Barro and Ursúa (2010) data. The num-
bers are obtained using equations (10) through (15) with the estimates shown in Table 12. All of the entries
are in percentages of lifetime consumption. We also report an extra welfare cost measure, λ, described in
Appendix B.4. We report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5.10}, for the implied
θ̂2 along the grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 14: Barro and Ursúa (2008) Data - Welfare Cost - ARIMA(1,1,0)

β = 0.95

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 3.81 4.73 6.02 7.93 2.36 3.10 4.16 5.78 1.42 1.58 1.78 2.04 0.54
γ = 2.5 5.39 6.76 8.75 11.82 4.13 5.39 7.24 10.12 1.21 1.30 1.41 1.55 0.73
γ = 5 6.69 8.62 11.65 16.96 5.52 7.38 10.31 15.47 1.11 1.16 1.22 1.30 0.83
γ = 7.5 7.84 10.56 15.48 27.76 6.70 9.35 14.18 26.25 1.07 1.10 1.15 1.20 0.88

β = 0.96

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 4.82 5.98 7.63 10.09 2.97 3.91 5.27 7.32 1.79 2.00 2.25 2.57 0.67
γ = 2.5 6.13 7.70 9.99 13.56 4.70 6.14 8.27 11.62 1.37 1.47 1.59 1.74 0.82
γ = 5 7.24 9.36 12.73 18.77 5.98 8.03 11.28 17.15 1.19 1.24 1.30 1.39 0.89
γ = 7.5 8.34 11.31 16.84 31.84 7.14 10.04 15.45 30.21 1.12 1.16 1.20 1.26 0.92

β = 0.97

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 6.52 8.11 10.38 13.77 4.01 5.28 7.13 9.95 2.42 2.69 3.03 3.47 0.91
γ = 2.5 7.08 8.92 11.62 15.88 5.43 7.12 9.63 13.61 1.57 1.68 1.82 2.00 0.94
γ = 5 7.88 10.24 14.03 21.00 6.52 8.79 12.45 19.22 1.27 1.33 1.40 1.49 0.96
γ = 7.5 8.91 12.19 18.46 37.69 7.64 10.84 16.99 35.89 1.18 1.22 1.26 1.32 0.97

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations using a robustness sample with only the original Barro and Ursúa (2010) data. The numbers are
obtained using equations (10) through (15) with the estimates shown in Table 12. All of the entries are in
percentages of lifetime consumption. We also report an extra welfare cost measure, λ, described in Appendix
B.4. We report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5.10}, for the implied θ̂2 along the
grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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Table 15: Barro and Ursúa (2008) Data - Welfare Cost - ARIMA(0,1,1)

β = 0.95

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 3.30 4.09 5.21 6.85 2.04 2.68 3.61 5.00 1.23 1.37 1.54 1.77 0.46
γ = 2.5 4.70 5.87 7.57 10.16 3.59 4.68 6.26 8.69 1.06 1.14 1.23 1.35 0.64
γ = 5 5.83 7.45 9.92 14.09 4.79 6.35 8.74 12.78 0.99 1.03 1.09 1.16 0.74
γ = 7.5 6.76 8.91 12.54 20.01 5.74 7.83 11.38 18.72 0.97 1.00 1.04 1.09 0.80

β = 0.96

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 4.16 5.16 6.57 8.67 2.57 3.38 4.54 6.31 1.55 1.72 1.94 2.22 0.58
γ = 2.5 5.31 6.65 8.60 11.60 4.07 5.31 7.11 9.92 1.20 1.28 1.39 1.52 0.72
γ = 5 6.27 8.04 10.76 15.42 5.16 6.86 9.49 14.01 1.05 1.10 1.16 1.23 0.79
γ = 7.5 7.15 9.47 13.45 21.98 6.08 8.34 12.23 20.61 1.01 1.05 1.09 1.14 0.83

β = 0.97

λT λB λR λ

θ̂2 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 0.62 0.66 0.70 0.74 -

γ = 1 5.61 6.96 8.90 11.77 3.45 4.55 6.13 8.53 2.08 2.31 2.61 2.98 0.78
γ = 2.5 6.11 7.67 9.95 13.48 4.68 6.12 8.23 11.54 1.37 1.46 1.58 1.74 0.82
γ = 5 6.79 8.73 11.76 17.02 5.60 7.46 10.39 15.49 1.13 1.18 1.24 1.32 0.85
γ = 7.5 7.59 10.11 14.50 24.43 6.46 8.91 13.21 22.96 1.06 1.10 1.14 1.19 0.87

Notes: The table displays the computed parameters for the decomposition of the welfare cost of total economic
fluctuations using a robustness sample with only the original Barro and Ursúa (2010) data. The numbers are
obtained using equations (18) through (15) with the estimates shown in Table 12. All of the entries are in
percentages of lifetime consumption. We also report an extra welfare cost measure, λ, described in Appendix
B.4. We report numbers for the relative degree of risk aversion γ ∈ {1, 2.5, 5.10}, for the implied θ̂2 along the
grid for θ1 ∈ {0, 0.1, 0.2, 0.3}, and with β ∈ {0.95, 0.96, 0.97} for the permanent shocks.
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